Respaldo y Recuperación

Publicado: noviembre 13, 2012 en Sistemas Operativos
Etiquetas:, ,

Recuperación de datos es el proceso de restablecer la información contenida en dispositivos de almacenamiento secundarios dañados, defectuosos, corruptos, inaccesibles o que no se pueden acceder de forma normal. A menudo la información es recuperada de dispositivos de almacenamiento tales como discos duros, cintas, CD, DVD, RAID y otros dispositivos electrónicos. La recuperación puede ser debida a un daño físico en el dispositivo de almacenamiento o por un daño lógico en el sistema de archivos que evita que el dispositivo sea accedido desde el sistema operativo. Ya sea utilizado en otro sistema o en otro lugar del original.

El escenario más común de “recuperación de datos” involucra una falla en el sistema operativo (típicamente de un solo disco, una sola partición, un solo sistema operativo), en este caso el objetivo es simplemente copiar todos los archivos requeridos en otro disco. Esto se puede conseguir fácilmente con un Live CD, la mayoría de los cuales provéen un medio para acceder al sistema de archivos, obtener una copia de respaldo de los discos o dispositivos removibles, y luego mover los archivos desde el disco hacia el respaldo con un administrador de archivos o un programa para creación de discos ópticos. Estos casos pueden ser mitigados realizando particiones del disco y continuamente almacenando los archivos de información importante (o copias de ellos) en una partición diferente del de la de los archivos de sistema en el sistema operativo, los cuales son reemplazables.

Otro escenario involucra una falla a nivel de disco, tal como un sistema de archivos o partición de disco que esté comprometido, o una falla en el disco duro. En cualquiera de estos casos, los datos no pueden ser fácilmente leidos. Dependiendo de la situación, las soluciones pueden estar entre reparar el sistema de archivos, la tabla de particiones o el registro maestro de cargado (MBR), o técnicas de recuperación del disco duro que van desde la recuperación basada en software de los datos corruptos a el reemplazo del hardware de un disco dañado físicamente. Si la recuperación del disco duro es necesaria, el disco de por sí típicamente ha fallado de manera permanente, y el propósito en vez de una recuperación de una sola vez, es el de rescatar cualquier dato que pueda ser leido.

En un tercer escenario, los archivos han sido “borrados” de un medio de almacenamiento. Típicamente, los archivos borrados no son realmente eliminados de inmediato; en vez de ello, las referencias a ellos en la estructura de directorios ha sido removida, y el espacio que éstos ocupan se hace disponible para su posterior sobre-escritura. En el transcurso de esto, el archivo original puede ser recuperado. Aunque hay cierta confusión acerca del término, la “recuperación de datos” puede también ser usada en el contexto de aplicaciones de informática forense o de espionaje.

mas información sobre recuperación  de datos: http://es.wikipedia.org/wiki/Recuperaci%C3%B3n_de_datos

Métodos de Recuperación

 RAID (“Redundant Array of Inexpensive Disks”)

En palabras simples es: un conjunto de 2 o más “Discos Duros” que operan como grupo y logran ofrecer una forma más avanzada de respaldo ya que:

Es posible mantener copias en linea (“Redundancy”).

Agiliza las operaciones del Sistema (sobre todo en bases de datos .)

El sistema es capaz de recuperar información sin intervención de un Administrador.

Existen varias configuraciones de Tipo RAID, sin embargo, existen 4 tipos que prevalecen en muchas Arquitecturas:

RAID-0 : En esta configuración cada archivo es dividido (“Striped”) y sus fracciones son colocadas en diferentes discos. Este tipo de implementación sólo agiliza el proceso de lectura de archivos, pero en ningún momento proporciona algún tipo de respaldo (“redundancy”).

RAID-1 : En orden ascendente, este es el primer tipo de RAID que otorga cierto nivel de respaldo; cada vez que se vaya a guardar un archivo en el sistema éste se copiara integro a DOS discos (en línea), es por esto que RAID-1 también es llamado “Mirroring”.

Además de proporcionar un respaldo en caliente (“hot”) en dado caso de fallar algún disco del grupo , RAID-1 también agiliza la lectura de archivos (si se encuentran ocupadas las cabezas de un disco “I/O”) ya que otro archivo puede ser leído del otro disco y no requiere esperar a finalizar el “I/O” del primer disco.

RAID-2: “Acceso paralelo con discos especializados. Redundancia a través del código Hamming”: El RAID nivel 2 adapta la técnica comúnmente usada para detectar y corregir errores en memorias de estado sólido. En un RAID de nivel 2, el código ECC (Error Correction Code) se intercala a través de varios discos a nivel de bit. El método empleado es el Hamming. Puesto que el código Hamming se usa tanto para detección como para corrección de errores. No tiene ninguna ventaja sobre el RAID-3. Así, todos los discos de la matriz están siendo “monitorizados” por el mecanismo. Actualmente, el RAID 2 es poco usado, ya que prácticamente todos los discos rígidos nuevos salen de fábrica con mecanismos de detección de fallas implantados.

RAID-3 : Esta configuración al igual que RAID-0 divide la información de todos los archivos (“Striping”) en varios discos, pero ofrece un nivel de respaldo que RAID-0 no ofrece. En RAID-0 si falla un disco del grupo, la Información no puede ser recuperada fácilmente, ya que cada disco del grupo contiene una fracción del archivo, sin embargo RAID-3 opera con un disco llamado “de paridad” (“parity disk”). Este “disco de paridad” guarda fracciones de los archivos necesarias para recuperar toda su Información, con esto, es posible reproducir el archivo que se perdió a partir de esta información de paridad.

RAID 4: distribuye los datos a nivel de bloque (la principal diferencia con el nivel 3), a través de varios discos, con la pariedad almacenada en un disco. La información de pariedad permite la recuperación de cualquier disco en caso de falla. El rendimiento de un arreglo nivel 4 es muy bueno para lecturas (similar al nivel 0). Sin embargo, la escritura requiere que los datos de pariedad sean actualizados cada vez. Esto retarda particularmente las escrituras aleatorias pequeñas, aunque las escrituras grandes o secuenciales son razonablemente rápidas. Debido a que solamente un disco es del arreglo es utilizado para datos redundantes, el costo por megabyte de un arreglo nivel 4 es relativamente bajo.

RAID-5 : es la alternativa más popular. El Nivel 5 crea datos de pariedad, distribuyéndolos a través de todos los discos (excepto en aquel disco en que se almacena la información original), obviando la necesidad de un disco de pariedad dedicado. El Nivel 5 es el más completo de todos los niveles de redundancia por distribución, por que si un disco falla, la información de pariedad en los otros permite la reconstrucción de toda su información. Aún más, el Nivel 5 escribe datos en los discos al nivel de bloques (en lugar de trabajar al nivel de bytes), volviéndolo más apropiado para múltiples transacciones pequeñas como e-mail, procesadores de palabras, hojas electrónicas, y aplicaciones de bases de datos. Los niveles 3 y 5 requieren al menos de 3 discos para su implementación.

 RAID 6: Similar al RAID 5, pero incluye un segundo esquema de paridad distribuido por los distintos discos y por tanto ofrece tolerancia extremadamente alta a los fallos y a las caídas de disco, ofreciendo dos niveles de redundancia. Hay pocos ejemplos comerciales en la actualidad, ya que su coste de implementación es mayor al de otros niveles RAID, ya que las controladoras requeridas que soporten esta doble paridad son más complejas y caras que las de otros niveles RAID. Así pues, comercialmente no se implementa.

RAID 0+1/ RAID 0/1 ó RAID 10: “Ambos mundos”: El RAID 0 + 1 es una combinación de los niveles 0 (Striping) y 1 (Mirroring), este que proporciona velocidad y tolerancia al fallo simultáneamente donde los datos son divididos entre los discos para mejorar el ingreso, pero también utilizan otros discos para duplicar la información. Así, es posible utilizar el buen ingreso del nivel 0 con la redundancia del nivel 1. Sin embargo, es necesario por lo menos 4 discos para montar un RAID de este tipo.. El nivel de RAID 0+1 fracciona los datos para mejorar el rendimiento, pero también utiliza un conjunto de discos duplicados para conseguir redundancia de datos. Al ser una variedad de RAID híbrida, RAID 0+1 combina las ventajas de rendimiento de RAID 0 con la redundancia que aporta RAID 1

Sistemas De Archivos

Sistema operativo Tipos de sistemas de archivos admitidos
Dos FAT16
Windows 95 FAT16
Windows 95 OSR2 FAT16, FAT32
Windows 98 FAT16, FAT32
Windows NT4 FAT, NTFS (versión 4)
Windows 2000/XP FAT, FAT16, FAT32, NTFS (versiones 4 y 5)
Linux Ext2, Ext3, ReiserFS, Linux Swap (FAT16, FAT32, NTFS)
MacOS HFS (Sistema de Archivos Jerárquico), MFS (Sistemas de Archivos Macintosh)
OS/2 HPFS (Sistema de Archivos de Alto Rendimiento)
SGI IRIX XFS
FreeBSD, OpenBSD UFS (Sistema de Archivos Unix)
Sun Solaris UFS (Sistema de Archivos Unix)
IBM AIX JFS (Sistema Diario de Archivos)
Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s